Computer Methods in Biomechanics and Biomedical Engineering

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gcmb20

Mechanical properties of deep-sea molluscan shell

Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Praha, Czech Republic
Czech Geological Survey, P.O.B. 85, 118 21, Prague 1, Czech Republic
Czech Technical University, Faculty of Mechanical Engineering, Biomechanics and Mechatronics, Prague, Czech Republic
The University Museum, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
VÚRV v.v.i., Crop Research Institute, Drnovská 507, 161 06, Prague - Ruzyne, Czech Republic

Published online: 07 Aug 2013.

To link to this article: http://dx.doi.org/10.1080/10255842.2013.815873

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Mechanical properties of deep-sea molluscan shell

I. Hrabáňková*a, J. Frýdaa,b, J. Šepitkaa, T. Sasaki d, B. Frýdovabd and J. Lukeše

aFaculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Praha, Czech Republic; bCzech Geological Survey, P.O.B. 85, 118 21 Prague 1, Czech Republic; cCzech Technical University, Faculty of Mechanical Engineering, Biomechanics and Mechatronics, Prague, Czech Republic; dThe University Museum, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; eVÚRV v.v.i., Crop Research Institute, Drnovská 507, 161 06 Prague – Ruzyne, Czech Republic

Keywords: Patellogastropoda; deep-sea; hardness and reduced elastic modulus

1. Introduction
The Patellogastropoda have been considered to represent a sister group of all other living gastropods, and thus are also considered the oldest gastropod group. All living patellogastropods are limpets with cap-shaped shells, typically occurring on intertidal rock substrates, except for a few living in the deep sea. The crucial question is whether the cap-shaped shells originated as a result of their adaptation to intertidal environments, or whether this shape represents a primitive feature. The patellogastropods also have the most complex shell microstructures of all gastropods (Fuchigami and Sasaki 2005). This shell complexity has often been used as evidence for their shallow water origin. Comparisons of the mechanical properties of homologous shell layers (i.e. layers having an identical microstructure, crystallographic texture and mineralogy) in patellogastropods living in shallow and deep water environments can shed light not only on the influence of water depth on the mechanical properties of biogenic carbonates, but also on patellogastropod phylogeny.

Here, we use a combination of nanoindentation and electron backscatter diffraction (EBSD) to test whether there is a difference in the mechanical properties of biogenic carbonates growing both in deep sea and in shallow water environments. The aims of the study are (1) to determinate the hardness \(H \) and reduced elastic modulus \(E_r \) in homologous layers of patellogastropod shells and (2) to analyse the influence of water depth on the values of \(H \) and \(E_r \).

2. Methods
Three different patellogastropod species from Japan were selected for this study: (1) the deep-sea limpet Pectinodonta orientalis from the Hyuga Basin, captured from 1092–1094 m, (2) Nipponacmea concinna from the coast near Kinkazan, Miyagi Prefecture, and (3) Limalepeta lima from the continental shelf near Kushiro, Hokkaido, captured from 50–100 m. The aragonitic concentric crossed lamellar (cCL) structure, forming the M + 1 layer in all of the above-mentioned species, and the calcitic semi-foliated (SF) structure, forming the M + 2 layer in P. orientalis and L. lima, were studied (see data in Fuchigami and Sasaki 2005).

Patellogastropod shells were separately embedded in epoxy resin. Subsequently, the samples were cut along the sagittal plane across the shell apex, and then polished using progressively finer polishing media (SiC, diamond and 0.05 μm colloidal silica).

The EBSD analysis was carried out using a Nordlys detector connected to a CamScan scanning electron microscope. Measurements of each of the shell layers were carried out in a regular grid with 15 μm spacing. The crystallographic orientations were evaluated by Channel 5 software (HKL Technology) and were plotted on a stereographic projection (Figure 1). For measurements of the mechanical properties in homologous layers only, areas having identical crystallographic textures were selected.

A Hysitron TI 950 TribolIndenter® nanomechanical test instrument was used to carry out quasi-static indents with a Berkovich probe on selected shell layers. The displacement-controlled indents at maximum indentation depth of 100 nm followed a trapezoidal loading function of \(5 \times 2 \times 5 \) s. Reduced elastic modulus \(E_r = S/2(\pi A)^{1/2} \), where \(S \) is the contact stiffness and \(A \) is the contact area, was determined from indentation curves according to Oliver and Pharr method using the TriboScan software.

3. Results and discussion
The EBSD analysis revealed identical textural patterns and a similar orientation of the crystallographic axes in...
the aragonitic cCL structure of the M + 1 layer in all three patellogastropods. In contrast, the M + 2 layer with calcitic SF structure is rather variable. This layer is developed only in the deep-sea P. orientalis and shallow water L. lima. In both species, the M + 2 layer has the same textural pattern, but the [0001] axes are oriented differently in different parts of their shells, varying from a direction perpendicular to the sagittal plane (Figure 1(A), (B)) to a direction parallel with it (Figure 1(C), (D)).

The hardness of the calcitic SF structure only measured in areas with [0001] axes of calcite parallel to the sagittal plane is about 4.4(2) GPa in L. lima, and about 4.1(3) GPa in the deep-sea P. orientalis. The reduced elastic modulus is identical in both species, at about 76(4) GPa (Figure 2). The hardness of the aragonitic cCL structures is similar (4.3(3) GPa in N. concinna, 4.2(3) GPa in L. lima and 4.4(4) GPa in P. orientalis). Values of the reduced elastic modulus are slightly more variable (85(3) GPa in N. concinna, 83(3) GPa in L. lima and 81(3) GPa in P. orientalis).

The calcitic and aragonitic shell layers have a very similar hardness, but their reduced elastic modulus differs significantly (Figure 2). It is noteworthy that both the measured H and E_r values differ significantly from the mechanical properties of inorganic aragonite and calcite. The aragonitic cCL structure has significantly lower hardness values, as well as a reduced elastic modulus, than inorganic aragonite (Figure 2). On the other hand, the calcitic SF structure has slightly, but significantly, higher values of its reduced elastic modulus. However, values of its hardness are almost double those in inorganic calcite (Figure 2). Similar observations on brachiopod biocalcite were published by Merkel et al. (2009).

The analysis of the effect of water depth on H and E_r values in biocarbonates revealed the lack of a close relationship. A statistically significant difference was found only between the reduced elastic modulus in the aragonitic cCL layer of N. concinna and deep-sea P. orientalis, and between the hardness of the calcitic SF layer of L. lima and deep-sea P. orientalis. On the other hand, there was no difference between the reduced elastic modulus in the aragonitic cCL layer of L. lima and deep-sea P. orientalis.

4. Conclusions

1. Our analyses revealed that bioaragonitic layers have significantly lower H and E_r values than inorganic aragonite; however, compared with inorganic calcite, the biocalcitic layers have distinctly higher H values, and similar E_r values.

2. The water depth has no or only a weak influence on the mechanical properties of the biogenic carbonates of the deep-sea limpet P. orientalis. This finding may support the hypothesis of an early settlement in the deep-sea environment by the patellogastropods (Nakano and Ozawa 2004).

![Figure 1](image1.png) Results of the EBSD analysis of the M + 2 layer in the deep-sea P. orientalis.

![Figure 2](image2.png) Results of the nanoindentation analysis, showing a relationship between the mechanical properties of biogenic aragonite and calcite (i.e. hardness and reduced elastic modulus; average of 15 measurements for each sample); as well as the relationship between the mechanical properties of those carbonates and water depth of their formation.
Acknowledgements
This study was supported by Grant No. 334600 from the CGS; project VZ 0002700604 (Section 010) and also by Grant No. TA01010185 of the Technology Agency from the Czech Republic.

References
